Operating Data (Cut) Charts

The Cut Charts on the following pages are optimized to provide the best cut angle, least dross and best cut surface finish. Keep in mind that these charts provide a good starting point and that optimum cutting must be tuned to the application and materials on site. Increasing cut speed, lowering the torch standoff, higher current consumables on thinner metals or increasing the oxygen ratio in the shield mix, for example, all present certain tradeoffs as mentioned in How to Get Better Cut Quality. Depending on the cutting application, it is up to the operator to determine if the tradeoffs are acceptable.

The cut charts also provide part numbers and illustrations of the consumables required to cut at specific amperages. For more detailed information, refer to the gas console control and indicator descriptions and the daily start-up procedure at the front of this section.

Cut Chart Index

<table>
<thead>
<tr>
<th>Material</th>
<th>Current</th>
<th>Plasma Gas</th>
<th>Shield Gas</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAC184 Torch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild Steel</td>
<td>15 Amp</td>
<td>O2</td>
<td>O2 & N2</td>
<td>4-19</td>
</tr>
<tr>
<td></td>
<td>30 Amp</td>
<td>O2</td>
<td>O2 & N2</td>
<td>4-20</td>
</tr>
<tr>
<td>PAC186 Torch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild Steel</td>
<td>15 Amp</td>
<td>O2</td>
<td>O2 & N2</td>
<td>4-21</td>
</tr>
<tr>
<td></td>
<td>30 Amp</td>
<td>O2</td>
<td>O2 & N2</td>
<td>4-22</td>
</tr>
<tr>
<td></td>
<td>50 Amp</td>
<td>O2</td>
<td>O2 & N2</td>
<td>4-24</td>
</tr>
<tr>
<td></td>
<td>70 Amp</td>
<td>O2</td>
<td>O2 & N2</td>
<td>4-27</td>
</tr>
<tr>
<td></td>
<td>100 Amp</td>
<td>O2</td>
<td>O2 & N2</td>
<td>4-31</td>
</tr>
<tr>
<td>Stainless Steel</td>
<td>30 Amp</td>
<td>Air</td>
<td>Air</td>
<td>4-23</td>
</tr>
<tr>
<td></td>
<td>50 Amp</td>
<td>Air</td>
<td>Air</td>
<td>4-25</td>
</tr>
<tr>
<td></td>
<td>70 Amp</td>
<td>Air</td>
<td>Air & CH4</td>
<td>4-28</td>
</tr>
<tr>
<td></td>
<td>100 Amp</td>
<td>H35 & N2</td>
<td>N2</td>
<td>4-32</td>
</tr>
<tr>
<td>Aluminum</td>
<td>70 Amp</td>
<td>Air</td>
<td>CH4</td>
<td>4-29</td>
</tr>
<tr>
<td></td>
<td>100 Amp</td>
<td>H35 & N2</td>
<td>N2</td>
<td>4-33</td>
</tr>
<tr>
<td>Copper</td>
<td>50 Amp</td>
<td>O2</td>
<td>O2 & N2</td>
<td>4-26</td>
</tr>
<tr>
<td></td>
<td>70 Amp</td>
<td>O2</td>
<td>O2 & N2</td>
<td>4-30</td>
</tr>
</tbody>
</table>
PAC184
Mild Steel
O₂ Plasma / O₂ & N₂ Shield
15 Amp Cutting

O₂ and N₂ gas inlet pressures must be between 105 - 135 psi (7.2 - 9.2 bar) for all material thickness.

* Slightly increasing the test preflow O₂ and N₂ flowrates may increase piercing capability on the thicker materials listed above. However, increasing the preflow flowrates too much may affect plasma starting reliability (misfiring).

** Torch standoff tolerances are ± 0.005 inch (± 0.125 mm). When using a THC, tolerances are ± 1 volt.

If problems occur with the cutting process, and the flowrates are suspect, refer to Section 5, Maintenance, Gas System Back Pressure Checks.
PAC184

Mild Steel

O₂ Plasma / O₂ & N₂ Shield

30 Amp Cutting

<table>
<thead>
<tr>
<th>Test Cut Flowrates (%)</th>
<th>Test Preflow* Flowrates (%)</th>
<th>Material Thickness</th>
<th>Arc Voltage</th>
<th>Torch-to-Work Distance**</th>
<th>Cutting Speed</th>
<th>Pierce Height</th>
<th>Pierce Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma Shield Preflow</td>
<td>(GA) (in) (mm) (volts) (in) (mm) (ipm) (m/min) (in) (mm) (dial) (sec)</td>
<td>Plasma Shield Preflow</td>
<td>(GA) (in) (mm) (volts) (in) (mm) (ipm) (m/min) (in) (mm) (dial) (sec)</td>
<td>Plasma Shield Preflow</td>
<td>(GA) (in) (mm) (volts) (in) (mm) (ipm) (m/min) (in) (mm) (dial) (sec)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O₂ O₂ N₂ O₂ N₂</td>
<td>24 0.024 0.6</td>
<td>117 0.030 0.8</td>
<td>200 5.08</td>
<td>0.060 1.5</td>
<td>0 0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 0.030 0.8</td>
<td>121 0.030 0.8</td>
<td>170 4.32</td>
<td>0.060 1.5</td>
<td>0 0.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 0.036 0.9</td>
<td>125 0.040 1.0</td>
<td>140 3.56</td>
<td>0.080 2.0</td>
<td>0 0.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 0.048 1.3</td>
<td>128 0.040 1.0</td>
<td>110 2.80</td>
<td>0.080 2.0</td>
<td>0 0.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 0.060 1.5</td>
<td>128 0.040 1.0</td>
<td>80 2.03</td>
<td>0.080 2.0</td>
<td>0 0.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 0.075 1.9</td>
<td>128 0.040 1.0</td>
<td>60 1.52</td>
<td>0.080 2.0</td>
<td>0.5 0.16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 0.105 2.7</td>
<td>135 0.060 1.5</td>
<td>50 1.27</td>
<td>0.100 2.5</td>
<td>1 0.27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 0.135 3.4</td>
<td>135 0.060 1.5</td>
<td>35 0.90</td>
<td>0.100 2.5</td>
<td>1.5 0.57</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/16 4.8</td>
<td>135 0.060 1.5</td>
<td>32 0.81</td>
<td>0.100 2.5</td>
<td>2 0.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/4 6.4</td>
<td>136 0.040 1.0</td>
<td>25 0.64</td>
<td>0.100 2.5</td>
<td>2.5 0.60</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

O₂ and N₂ gas inlet pressures must be between 105 - 135 psi (7.2 - 9.2 bar) for all material thickness.

* Slightly increasing the test preflow O₂ and N₂ flowrates may increase piercing capability on the thicker materials listed above. However, increasing the preflow flowrates too much may affect plasma starting reliability (misfiring).

** Torch standoff tolerances are ± 0.005 inch (± 0.125 mm). When using a THC, tolerances are ± 1 volt.

If problems occur with the cutting process, and the flowrates are suspect, refer to Section 5, Maintenance, Gas System Back Pressure Checks.
PAC186

Mild Steel

O₂ Plasma / O₂ & N₂ Shield

15 Amp Cutting

<table>
<thead>
<tr>
<th>Material Thickness</th>
<th>Arc Voltage (volts)</th>
<th>Torch-to-Work Distance (in)</th>
<th>Cutting Speed (m/min)</th>
<th>Pierce Height (in)</th>
<th>Pierce Delay (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.020</td>
<td>0.040</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>0.030</td>
<td>0.048</td>
<td>0.8</td>
<td>1.0</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>0.040</td>
<td>0.075</td>
<td>1.0</td>
<td>1.5</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>0.060</td>
<td>0.100</td>
<td>1.2</td>
<td>1.5</td>
<td>0.4</td>
<td>0.4</td>
</tr>
</tbody>
</table>

O₂ and N₂ gas inlet pressures must be between 105 - 135 psi (7.2 - 9.2 bar) for all material thickness.

* Slightly increasing the test preflow O₂ and N₂ flowrates may increase piercing capability on the thicker materials listed above. However, increasing the preflow flowrates too much may affect plasma starting reliability (misfiring).

** Torch standoff tolerances are ± 0.005 inch (± 0.125 mm). When using a THC, tolerances are ± 1 volt.

*** To maintain the 0.020 inch (0.5 mm) torch standoff as the electrode wears, the arc voltage may have to be increased to avoid having the torch dive into the plate.

Counter clockwise (CCW) consumables are available for mirror image cutting. Refer to Section 6, Parts List.

If problems occur with the cutting process, and the flowrates are suspect, refer to Section 5, Maintenance, Gas System Back Pressure Checks.
O_2_ and N\textsubscript{2} gas inlet pressures must be between 105 - 135 psi (7.2 - 9.2 bar) for all material thickness.

* Slightly increasing the test preflow O\textsubscript{2} and N\textsubscript{2} flowrates may increase piercing capability on the thicker materials listed above. However, increasing the preflow flowrates too much may affect plasma starting reliability (misfiring).

** Torch standoff tolerances are ± 0.005 inch (± 0.125 mm). When using a THC, tolerances are ± 1 volt.

Counter clockwise (CCW) consumables are available for mirror image cutting. Refer to Section 6, Parts List.

If problems occur with the cutting process, and the flowrates are suspect, refer to Section 5, Maintenance, Gas System Back Pressure Checks.
Air inlet pressures must be between 105 - 135 psi (7.2 - 9.2 bar) for all material thickness.

Stainless steel plate sometimes comes with a protective plastic film. Remove film prior to cutting.

* Slightly increasing the test preflow Air flowrates may increase piercing capability on the thicker materials listed above. However, increasing the preflow flowrates too much may affect plasma starting reliability (misfiring).

** Torch standoff tolerances are ± 0.005 inch (± 0.125 mm). When using a THC, tolerances are ± 1 volt.

*** To maintain the 0.020 inch (0.5 mm) torch standoff as the electrode wears, the arc voltage may have to be increased to avoid having the torch dive into the plate.

Counter clockwise (CCW) consumables are available for mirror image cutting. Refer to Section 6, Parts List.

If problems occur with the cutting process, and the flowrates are suspect, refer to Section 5, Maintenance, Gas System Back Pressure Checks.
OPERATION

PAC186

Mild Steel

O₂ Plasma / O₂ & N₂ Shield

50 Amp Cutting

Test Cut Flowrates (%)	**Test Preflow* Flowrates (%)**
Plasma	Shield
O₂	O₂
--- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | ---
22 | 0.030 | 0.8 | 103 | 0.040 | 1.0 | 270 | 6.86 | 0.060 | 1.5 | 0 | 0
20 | 0.036 | 0.9 | 103 | 0.040 | 1.0 | 210 | 5.33 | 0.060 | 1.5 | 0 | 0
18 | 0.048 | 1.3 | 104 | 0.040 | 1.0 | 160 | 4.06 | 0.060 | 1.5 | 0 | 0
16 | 0.060 | 1.5 | 109 | 0.050 | 1.3 | 120 | 3.05 | 0.080 | 2.0 | 0 | 0
14 | 0.075 | 1.9 | 113 | 0.050 | 1.3 | 100 | 2.54 | 0.080 | 2.0 | 0 | 0
12 | 0.105 | 2.7 | 119 | 0.050 | 1.3 | 75 | 1.91 | 0.100 | 2.5 | 0 | 0.1
10 | 0.135 | 3.4 | 122 | 0.060 | 1.5 | 55 | 1.40 | 0.100 | 2.5 | .5 | 0.2
8 | 0.160 | 4.0 | 127 | 0.060 | 1.5 | 45 | 1.14 | 0.120 | 3.0 | 1 | .03
6/8 | 0.200 | 5.1 | 132 | 0.080 | 2.0 | 35 | 0.90 | 0.120 | 3.0 | 2 | 0.5

O₂ and N₂ gas inlet pressures must be between 105 - 135 psi (7.2 - 9.2 bar) for all material thickness.

* Slightly increasing the test preflow O₂ and N₂ flowrates may increase piercing capability on the thicker materials listed above. However, increasing the preflow flowrates too much may affect plasma starting reliability (misfiring).

** Torch standoff tolerances are ± 0.005 inch (± 0.125 mm). When using a THC, tolerances are ± 1 volt.

Counter clockwise (CCW) consumables are available for mirror image cutting. Refer to Section 6, *Parts List*.

If problems occur with the cutting process, and the flowrates are suspect, refer to Section 5, Maintenance, *Gas System Back Pressure Checks*.
PAC186
Stainless Steel#
Air Plasma / Air Shield
50 Amp Cutting

Air inlet pressures must be between 105 - 135 psi (7.2 - 9.2 bar) for all material thickness.

Stainless steel plate sometimes comes with a protective plastic film. Remove film prior to cutting.

* Slightly increasing the test preflow Air flowrates may increase piercing capability on the thicker materials listed above. However, increasing the preflow flowrates too much may affect plasma starting reliability (misfiring).

** Torch standoff tolerances are ± 0.005 inch (± 0.125 mm). When using a THC, tolerances are ± 1 volt.

*** Measured from tips of shield adapter 020949.

Counter clockwise (CCW) consumables are available for mirror image cutting. Refer to Section 6, Parts List.

If problems occur with the cutting process, and the flowrates are suspect, refer to Section 5, Maintenance, Gas System Back Pressure Checks.
PAC186

Copper#

O₂ Plasma / O₂ & N₂ Shield

50 Amp Cutting

Test Cut Flowrates (%)

<table>
<thead>
<tr>
<th>Material Thickness</th>
<th>Plasma</th>
<th>Shield</th>
<th>Preflow</th>
</tr>
</thead>
<tbody>
<tr>
<td>(GA) (in) (mm)</td>
<td>(volts) (in) (mm)</td>
<td>(ipm)</td>
<td>(m/min)</td>
</tr>
<tr>
<td>16 0.060 1.5</td>
<td>92 0.080 2.0</td>
<td>70</td>
<td>1.78</td>
</tr>
<tr>
<td>14 0.075 1.9</td>
<td>92 0.080 2.0</td>
<td>70</td>
<td>1.78</td>
</tr>
<tr>
<td>12 0.150 2.7</td>
<td>94 0.080 2.0</td>
<td>65</td>
<td>1.65</td>
</tr>
<tr>
<td>10 0.135 3.4</td>
<td>94 0.080 2.0</td>
<td>65</td>
<td>1.65</td>
</tr>
</tbody>
</table>

O₂ and N₂ gas inlet pressures must be between 105 - 135 psi (7.2 - 9.2 bar) for all material thickness.

Copper plate sometimes comes with a protective plastic film. Remove film prior to cutting.

* Slightly increasing the test preflow O₂ and N₂ flowrates may increase piercing capability on the thicker materials listed above. However, increasing the preflow flowrates too much may affect plasma starting reliability (misfiring).

** Torch standoff tolerances are ± 0.005 inch (± 0.125 mm). When using a THC, tolerances are ± 1 volt.**

*** Measured from tips of shield adapter 020949.

Counter clockwise (CCW) consumables are available for mirror image cutting. Refer to Section 6, *Parts List.*

If problems occur with the cutting process, and the flowrates are suspect, refer to Section 5, Maintenance, *Gas System Back Pressure Checks.*
PAC186

Mild Steel

O₂ Plasma / O₂ & N₂ Shield

70 Amp Cutting

O₂ and N₂ gas inlet pressures must be between 105 - 135 psi (7.2 - 9.2 bar) for all material thickness.

* Slightly increasing the test preflow O₂ and N₂ flowrates may increase piercing capability on the thicker materials listed above. However, increasing the preflow flowrates too much may affect plasma starting reliability (misfiring).

** Torch standoff tolerances are ± 0.005 inch (± 0.125 mm). When using a THC, tolerances are ± 1 volt.

*** Measured from tips of shield adapter 020796.

Counter clockwise (CCW) consumables are available for mirror image cutting. Refer to Section 6, Parts List.

If problems occur with the cutting process, and the flowrates are suspect, refer to Section 5, Maintenance, Gas System Back Pressure Checks.
PAC186
Stainless Steel#
Air Plasma / Air & CH₄ Shield
70 Amp Cutting

Air and CH₄ gas inlet pressures must be between 105 - 135 psi (7.2 - 9.2 bar) for all material thickness.

Stainless steel plate sometimes comes with a protective plastic film. Remove film prior to cutting.

* Slightly increasing the test preflow Air flowrates may increase piercing capability on the thicker materials listed above. However, increasing the preflow flowrates too much may affect plasma starting reliability (misfiring).

** Torch standoff tolerances are ± 0.005 inch (± 0.125 mm). When using a THC, tolerances are ± 1 volt.

*** Measured from tips of shield adapter 020796.

**** Piercing 1/2 inch (12.7 mm) stainless steel is not recommended, it will shorten consumable life. Starting cuts at the edge of the metal is recommended.

Counter clockwise (CCW) consumables are available for mirror image cutting. Refer to Section 6, Parts List.

If problems occur with the cutting process, and the flowrates are suspect, refer to Section 5, Maintenance, Gas System Back Pressure Checks.
Air and CH₄ gas inlet pressures must be between 105 - 135 psi (7.2 - 9.2 bar) for all material thickness.

* Aluminum plate sometimes comes with a protective plastic film. Remove film prior to cutting.

* Slightly increasing the test preflow Air flowrates may increase piercing capability on the thicker materials listed above. However, increasing the preflow flowrates too much may affect plasma starting reliability (misfiring).

** Torch standoff tolerances are ± 0.005 inch (± 0.125 mm). When using a THC, tolerances are ± 1 volt.

*** Measured from tips of shield adapter 020796.

Counter clockwise (CCW) consumables are available for mirror image cutting. Refer to Section 6, Parts List.

If problems occur with the cutting process, and the flowrates are suspect, refer to Section 5, Maintenance, Gas System Back Pressure Checks.
O₂ and N₂ gas inlet pressures must be between 105 - 135 psi (7.2 - 9.2 bar) for all material thickness.

Copper plate sometimes comes with a protective plastic film. Remove film prior to cutting.

* Slightly increasing the test preflow O₂ and N₂ flowrates may increase piercing capability on the thicker materials listed above. However, increasing the preflow flowrates too much may affect plasma starting reliability (misfiring).

** Torch standoff tolerances are ± 0.005 inch (± 0.125 mm). When using a THC, tolerances are ± 1 volt.

*** Measured from tips of shield adapter 020796.

Counter clockwise (CCW) consumables are available for mirror image cutting. Refer to Section 6, Parts List.

If problems occur with the cutting process, and the flowrates are suspect, refer to Section 5, Maintenance, Gas System Back Pressure Checks.
PAC186
Mild Steel
O₂ Plasma / O₂ & N₂ Shield
100 Amp Cutting

Test Cut Flowrates (%)

<table>
<thead>
<tr>
<th>Material Thickness</th>
<th>Plasma Flowrates (%)</th>
<th>Shield Flowrates (%)</th>
<th>Preflow Flowrates (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>—</td>
<td>O₂ 3.2 (% Red)</td>
<td>O₂ 137 (in)</td>
<td>Arc Voltage 0.125 (in)</td>
</tr>
<tr>
<td>—</td>
<td>O₂ 3.2 (% Red)</td>
<td>O₂ 137 (in)</td>
<td>Torch-to-Work Distance 275 (mm)</td>
</tr>
<tr>
<td>—</td>
<td>O₂ 3.2 (% Red)</td>
<td>O₂ 137 (in)</td>
<td>Cutting Speed 7.0 (ipm)</td>
</tr>
<tr>
<td>—</td>
<td>O₂ 3.2 (% Red)</td>
<td>O₂ 137 (in)</td>
<td>Pierce Height 0.180 (in)</td>
</tr>
<tr>
<td>—</td>
<td>O₂ 3.2 (% Red)</td>
<td>O₂ 137 (in)</td>
<td>Pierce Delay 4.6 (mm)</td>
</tr>
</tbody>
</table>

O₂ and N₂ gas inlet pressures must be between 105 - 135 psi (7.2 - 9.2 bar) for all material thickness.

* Slightly increasing the test preflow O₂ and N₂ flowrates may increase piercing capability on the thicker materials listed above. However, increasing the preflow flowrates too much may affect plasma starting reliability (misfiring).

** Torch standoff tolerances are ± 0.005 inch (± 0.125 mm). When using a THC, tolerances are ± 1 volt.

Counter clockwise (CCW) consumables are available for mirror image cutting. Refer to Section 6, Parts List.

If problems occur with the cutting process, and the flowrates are suspect, refer to Section 5, Maintenance, Gas System Back Pressure Checks.
PAC186
Stainless Steel
H35 & N₂ Plasma / N₂ Shield
100 Amp Cutting

H35 and N₂ gas inlet pressures must be between 105 - 135 psi (7.2 - 9.2 bar) for all material thickness.

H35 gas purity must be 99.995% minimum.

H35 flowrate must be 85 scfh (2407 l/hr) at fullscale.

** Torch standoff tolerances are ± 0.005 inch (± 0.125 mm). When using a THC, tolerances are ± 1 volt.

If the part is not completely cut away from the scrap, try modifying the leadout. Stop the cut 0.050 inch (1.3 mm) before the end of the part for 1/4 and 3/8 inch (6.4 and 9.5 mm) material and 0.100 inch (2.5 mm) for 1/2 inch (12.7 mm) material. The ramp down of the current and gases will complete the cut. If your program can not be modified, reduce cutting speed and use no leadout.

Counter clockwise (CCW) consumables are available for mirror image cutting. Refer to Section 6, Parts List.

If problems occur with the cutting process, and the flowrates are suspect, refer to Section 5, Maintenance, Gas System Back Pressure Checks.
H35 and N₂ gas inlet pressures must be between 105 - 135 psi (7.2 - 9.2 bar) for all material thickness.

H35 flowrate must be 85 scfh (2407 l/hr) at fullscale.

** Torch standoff tolerances are ± 0.005 inch (± 0.125 mm). When using a THC, tolerances are ± 1 volt.

Counter clockwise (CCW) consumables are available for mirror image cutting. Refer to Section 6, Parts List.

If problems occur with the cutting process, and the flowrates are suspect, refer to Section 5, Maintenance, Gas System Back Pressure Checks.